[1]张文德 李燕园.基于证据理论和中智集的不确定数据融合方法研究[J].信息化理论与实践,2021,(01):85-91.
 Zhang Wen-de Li yan-yuan.Research on Uncertain Data Fusion Method Based on Evidence Theory and Neutrosophic Sets[J].Information Theory and Practice,2021,(01):85-91.
点击复制

基于证据理论和中智集的不确定数据融合方法研究()
分享到:

《信息化理论与实践》[ISSN:2520-5862/CN:]

卷:
期数:
2021年01
页码:
85-91
栏目:
出版日期:
2021-12-31

文章信息/Info

Title:
Research on Uncertain Data Fusion Method Based on Evidence Theory and Neutrosophic Sets
作者:
张文德 李燕园
福州大学信息管理研究所
Author(s):
Zhang Wen-de Li yan-yuan
(Information Management Institute, Fuzhou University, Fuzhou 350108, China)
关键词:
多属性群决策数据融合证据理论单值中智集中智熵
Keywords:
Multiple Attribute Group Decision Making Data Fusion Evidence Theory Single- valued Neutrosophic set Entropy of Neutrosophic set s
摘要:
目的]针对多属性群决策中的不确定数据融合问题,提出基于证据理论和中智集的不确定数据融合方法。[方法]首先,利用中智信息熵确定属性数据权重,并将专家对各属性的以单值中智数形式表示的评价数据转化为基本概率分配函数形式,利用D-S证据合成公式将专家关于方案集的多属性证据进行融合。然后,利用证据冲突度度量不同专家之间的评价数据的冲突程度并确定各专家权重,再利用D-S证据合成公式将所有专家关于方案集的数据进行融合。[结果]从智慧校园背景下的智慧教室建设方案选择场景中提炼具体问题,通过实例进行验证分析。[局限]中智环境下的D-S证据合成公式及基本概率分配函数的构造有待进一步优化与完善。[结论]本文所提出的方法具有一定的合理性与有效性。
Abstract:
[Objective]Aiming at the problem of uncertain data fusion in multi-attribute group decision making, an uncertain data fusion method based on evidence theory and intelligence set is proposed.[Methods]Firstly,the weight of attribute data is determined by using Chinese intelligence information entropy, and the evaluation data of each attribute in the form of single valued Chinese intelligence number is transformed into the form of basic probability distribution function, and the multi-attribute evidence of experts about the scheme set is fused by using D-S evidence synthesis formula. Then,the conflict degree of evidence is used to measure the conflict degree of evaluation data among different experts, and the weight of each expert is determined.Then, the D-S evidence synthesis formula is used to fuse the data of all experts about the scheme set.[Results]The specific problems were extracted from the scenario of smart classroom construction scheme selection under the background of smart campus,and verified and analyzed by examples.[Limitation]The construction of D-S evidence composition formula and basic probability distribution function in Chinese intelligence environment needs to be further optimized and improved.[Conclusion]The method proposed in this paper is reasonable and effective

参考文献/References:

[1]Zadeh LA.Fuzzy sets.Inf Control,1965;8(3):338-53.

[2]Atanassov K.T.Intuitionistic fuzzy sets [M].Intuitionistic fuzzy sets.Springer.1999: 1-137.

[3]Smarandache F.A unifying field in Logics:Neutrosophic Logic[M].Philosophy.American Research Press.1999:1-141.

[4]Bellman R E,Zadeh L A.Decision-Making in a Fuzzy Environment[J].Management Science.1970,17(4):141-164

[5]He Y,Chen H,Zhou L,et al.Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making[J]. Information Sciences An International Journal,2014,259:142-159.

[6]Zhou L,Tao Z,Chen H,et al.Continuous interval-valued intuitionistic fuzzy aggregation operators and their applications to group decision making[J].Applied Mathematical Modelling,2014,38(7-8):2190-2205.

[7]Zhou L,Jin F,Chen H,et al.Continuous intuitionistic fuzzy ordered weighted distance measure and its application to group decision making[J].Technological & Economic Development of Economy,2016,22(1):75-99

[8]Wu Q,Peng W,Zhou L,et al.Some new Hamacher aggregation operators under single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group decision making[J].Computers & Industrial Engineering,2018,116(1):144-162.

[9]He Y,Chen H,Zhou L,et al.Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making[J].Information Sciences An International Journal,2014,259:142-159.

[10]Budescu D V,Yu H T.To Bayes or Not to Bayes? A Comparison of Two Classes of Models of Information Aggregation[J].Decision Analysis,2006,3(3):145-162.

[11]Yang J B ,Singh M G.An evidential reasoning approach for multiple-attribute decision making with uncertainty[J].IEEE Transactions on Systems Man & Cybernetics,1994,24(1):1-18.

[12]Al-Najjar B,Alsyouf I.Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making[J].International Journal of Production Economics,2003,84(1):85-100.

[13]Wang H.,Smarandache F.,Sunderraman R.,Zhang Y-Q.Interval neutrosophic sets and logic: theory and applications in computing:Theory and applications in computing[M].Infinite Study,2005.

[14]Haibin W.,Smarandache F.,Zhang Y.,Sunderraman R.Single valued neutrosophic sets[M].Infinite Study,2010.

[15]王坚强,李新娥.基于多值中智集的TODIM方法[J].控制与决策,2015,30(06):1139-1142.

[16]谭睿璞,张文德,陈龙龙.基于单值中智集VIKOR的应急群体决策方法[J].中国安全生产科学技术,2017,13(02):79-84.

[17]陈云翔,蔡忠义,张诤敏,项华春.基于证据理论和直觉模糊集的群决策信息集结方法[J].系统工程与电子技术,2015,37(03):594-598.

[18]谭睿璞,张文德,陈圣群,杨乐华.异质信息环境下基于案例推理的应急决策方法[J].控制与决策,2020,35(08):1966-1976.

相似文献/References:

[1]张文德 杨雪 谢建琳.基于数据共享的高校数据融合策略研究*[J].信息化理论与实践,2022,02(02):40.
 Zhang Wende Yang Xue Xie Jianlin.Research on university data fusion strategy based on data sharing[J].Information Theory and Practice,2022,02(01):40.

更新日期/Last Update: 2022-12-20