参考文献/References:
[1]中国互联网络信息中心.第45次中国互联网络发展状况统计报告(2020-04-28)[EB/OL], [2020-08-08], http://www.cac.gov.cn/2020-04/27/c_1589535470378587.htm .
[2]盖玲.防网页篡改技术比较分析[J].图书与情报.2007(01)
[3]韩钢.国家互联网应急中心图像处理技术在网页篡改识别上的应用[J].通信管理与技术.2017(03)
[4]颜于凤,沈勇.基于图像处理的网页篡改检测[J].计算机与数字工程.2020(6):1479-1482, 1518
[5]王闻祎.网页篡改检测系统设计与实现[D].西南交通大学 2019
[6]牛小明,毕可骏,唐军.图文识别技术综述[J].中国体视学与图像分析2019(24):241-256
[7]SIGAI.自然场景文本检测识别技术综述(2018-06-30)[EB/OL],[2020-08-08], https://blog.csdn.net/ SIGAICSDN/article/details/80858565
[8]Paddle,PaddleOCR(2020-08-08)[EB/OL][2020-08-08].https://github.com/PaddlePaddle/PaddleOCR
[9]白翔,杨明锟,石葆光,等.基于深度学习的场景文字检测与识别[J].中国科学:信息科学,2018,48(5):531-544.
[10]Liao Minghui, Wan Zhaoyi, Yao Cong, et al. Real-time Scene Text Detection with Differentiable Binarization[C].National Conference on Artificial Intelligence,
2020.
[11]Shi B, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE transactions on pattern analysis and machine intelligence,2016,39(11):2298-2304
[12]墨殇浅尘.场景文本检测(Differentiable Binarization)-DB (2020-07-03)[EB/OL], [2020-08-08], https://www.cnblogs.com/monologuesmw/p/13223314.html
[13]Alex Graves,Jürgen Schmidhuber.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks,2005 (5)
[14]Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]. Proceedings of the 23rd international conference on Machine learning.New York:ACM,2006: 369-376.
[15]魏文晗,邓一贵.基于局部变化性的网页篡改识别模型及方法[J].计算机应用.2013,33(2):430-433