参考文献/References:
[1].Dhawal Shah. By The Numbers: MOOCs in 2018[EB/OL].(2018-12-11)[2019-05-03]. https://www.classcentral.com/report/mooc-stats-2018/.
[2].新华网.慕课——中国高等教育实现“变轨超车”的关键一招[EB/OL].(2018-04-16)[2019-06-12]. http://www.xinhuanet.com/politics/2018-04/16/c_1122689822.htm.
[3].王萍.大规模在线开放课程的新发展与应用:从cMOOC到xMOOC[J].现代远程教育研究,2013(03):13-19.
[4].Bing Liu. Sentiment analysis: Mining opinions, sentiments, and emotions [M]. Cambridge University Press, 2015.
[5].Bo Pang, Lillian Lee. Opinion mining and sentiment analysis[J]. Computational Linguistics, 2009, 35( 2): 311-312.
[6].Bing Liu. Sentiment analysis and opinion mining[J]. Synthesis lectures on human language technologies, 2012, 5(1): 1-167.
[7].Guang Qiu, Bing Liu, Jiajun Bu, Chun Chen. Opinion word expansion and target extraction through double propagation[J]. Computational linguistics, 2011, 37(1): 9-27.
[8].Ana-Maria Popescu, Oren Etzioni. Extracting product features and opinions from reviews[C]. Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver. Stroudsburg, PA, USA: Association for Computational Linguistics, 2005 : 9-28.
[9].Li Zhuang, Feng Jing, Xiao-Yan Zhu. Movie Review Mining and Summarization[C]. Proceedings of the ACM 15th Conference on Information and Knowledge Management , Arlington, Virginia, USA . New York, USA: ACM, 2006: 43-50.
[10].刘三女牙,彭晛,刘智,孙建文,刘海.面向MOOC课程评论的学习者话题挖掘研究[J].电化教育研究,2017,38(10):30-36.
[11].贺杰. 在线教育课程评论文本情感倾向性研究[D]. 江西财经大学, 2017.
[12].Rani S, Kumar P. A Sentiment Analysis System to Improve Teaching and Learning[J]. Computer, 2017, 50(5):36-43.
[13].M?ntyl? M V, Graziotin D, Kuutila M. The evolution of sentiment analysis—A review of research topics, venues, and top cited papers[J]. Computer Science Review, 2018, 27:16-32.
[14].Shiliang Sun, Chen Luo, Junyu Chen. A review of natural language processing techniques for opinion mining systems[J]. Information fusion, 2017, 36: 10-25.
[15].Theresa Wilson, Janyce Wiebe, Paul Hoffmann. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis[C]. Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver, British Columbia, Canada. Stroudsburg, PA, USA: Association for Computational Linguistics , 2005: 347–354.
[16].Jun Zhao, Kang Liu, Gen Wang. Adding redundant features for CRFs-based sentence sentiment classification[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Honolulu, Hawaii. Stroudsburg, PA, USA: Association for Computational Linguistics, 2008: 117-126.
[17].Bo Pang, Lillian Lee. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[C]. Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, Barcelona, Spain. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004.
[18].Alaa El-Halees. Mining Opinions in User-Generated Contents to Improve Course Evaluation[C]. International Conference on Software Engineering and Computer Systems, Berlin, Heidelberg . Springer, 2011:107-115.
[19].Chee Kian Leong, Yew Haur Lee, and Wai Keong Mak. Mining sentiments in SMS texts for teaching evaluation[J]. Expert Systems with Applications, 2012, 39(3): 2584-2589.
[20].Myriam Munezero, Calkin Suero Montero, Maxim Mozgovoy, and Erkki Sutinen. Exploiting sentiment analysis to track emotions in students’ learning diaries[C]. Proceedings of the 13th Koli Calling International Conference on Computing Education Research, Koli, Finland. New York, USA: ACM, 2013: 145-152.
[21].Rebecca Ferguson, Zhongyu Wei, Yulan He, and Simon Buckingham Shum. An evaluation of learning analytics to identify exploratory dialogue in online discussions[C]. Proceedings of the Third International Conference on Learning Analytics and Knowledge, Leuven, Belgium. New York, USA: ACM, 2013: 85-93.
[22].Arti Ramesh, Dan Goldwasser, Bert Huang, Hal Daumé, Lise Getoor. Understanding MOOC Discussion Forums using Seeded LDA [C]. Proceedings of the Ninth Workshop on Innovative Use of NLP for Building Educational Applications, Baltimore, Maryland. Association for Computational Linguistics, 2014: 28-33.
[23].Miaomiao Wen, Diyi Yang, Carolyn Penstein Rosé. Sentiment Analysis in MOOC Discussion Forums: What does it tell us? [C]. Proceedings of Educational Data Mining. 2014: 130-137.
[24].刘智. 课程评论的情感倾向识别与话题挖掘技术研究[D]. 华中师范大学, 2014.
[25].潘怡,叶辉,邹军华.E-learning评论文本的情感分类研究[J].开放教育研究,2014,20(02):88-94.
[26].Aysu Ezen-Can, Joseph F. Grafsgaard, James C. Lester, and Kristy Elizabeth Boyer. Classifying student dialogue acts with multimodal learning analytics[C]. Proceedings of the Fifth International Conference on Learning Analytics And Knowledg, Poughkeepsie, New York. New York, USA: ACM , 2015: 280-289.
[27].冯君. 基于条件随机场的情感分析模型在MOOCs评论文本分析中的应用研究[D].华中师范大学,2017.
[28].Hongxiao Fei, Hongyuan Li. The Study of Learners’ Emotional Analysis Based on MOOC[C]. International Conference on Cognitive Computing. Springer, 2018: 170-178.
[29].Jian-Syuan Wong, Xiaolong Lu, ke Zhang. MessageLens: A Visual Analytics System to Support Multifaceted Exploration of MOOC Forum Discussions[J]. Visual Informatics, 2018, 2(1):37-49.
[30].姚天昉, 程希文, 徐飞玉,等. 文本意见挖掘综述[J]. 中文信息学报, 2008, 22(3):71-80.
[31].赵妍妍, 秦兵, 刘挺. 文本情感分析[J]. 软件学报, 2010, 21(8):1834-1848.
[32].Minqing Hu, Bing Liu. Mining and summarizing customer reviews[C]. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle, WA, USA. New York, NY, USA: ACM , 2004: 168-177.
[33].Kim S M, Hovy E. Identifying opinion holders for question answering in opinion texts[C]. Proceedings of AAAI-05 Workshop on Question Answering in Restricted Domains, 2005.
[34].Wei Jin, Hung Hay Ho, Rohini K. Srihari. A novel machine learning system for web opinion mining and extraction[C]. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France. New York, USA: ACM, 2009:1195-1204.
[35].Niklas Jakob, Iryna Gurevych. Extracting opinion targets in a single-and cross-domain setting with conditional random fields[C]. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, Massachusetts. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010: 1035-1045.
[36].Zhou X, Wan X, Xiao J. Cross-language opinion target extraction in review texts[C]. 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium. IEEE, 2012: 1200-1205.
[37].Wang W, Pan S J, Dahlmeier D, et al. Recursive neural conditional random fields for aspect-based sentiment analysis[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas. USA: Association for Computational Linguistics, 2016: 616–626.
[38].Wu Y, Zhang Q, Huang X, et al. Phrase dependency parsing for opinion mining[C]. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009: 1533-1541.
[39].张彩琴. 基于Co-training训练CRF模型的评价搭配识别[D]. 山西大学, 2013.
[40].廖祥文, 陈兴俊, 魏晶晶,等. 基于多层关系图模型的中文评价对象与评价词抽取方法[J]. 自动化学报, 2017, 43(3):462-471.
[41].沈亚田,黄萱菁,曹均阔.使用深度长短时记忆模型对于评价词和评价对象的联合抽取[J].中文信息学报,2018,32(02):110-119.
[42].Li S, Wang R, Zhou G. Opinion target extraction using a shallow semantic parsing framework[C]. Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada. AAAI, 2012: 1671-1677.
[43].Qiu G, Liu B, Bu J, et al. Opinion word expansion and target extraction through double propagation[J]. Computational linguistics, 2011, 37(1): 9-27.
[44].Li F, Pan S J, Jin O, et al. Cross-domain co-extraction of sentiment and topic lexicons[C]. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, Korea. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012:410-419.
[45].Xu L, Liu K, Lai S, et al. Mining opinion words and opinion targets in a two-stage framework[C]. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria. Association for Computational Linguistics, 2013: 1764-1773.
[46].Liu K, Xu L, Zhao J. Syntactic patterns versus word alignment: Extracting opinion targets from online reviews[C]. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria. Association for Computational Linguistics, 2013: 1754-1763.
[47].李纲,刘广兴,毛进,叶光辉.一种基于句法分析的情感标签抽取方法[J].图书情报工作,2014,58(14):12-20.
[48].张莉, 钱玲飞, 许鑫. 基于核心句及句法关系的评价对象抽取[J]. 中文信息学报. 2011.25(3):23-29.
[49].顾正甲,姚天昉.评价对象及其倾向性的抽取和判别[J].中文信息学报,2012,26(04):91-97.
[50].李丕绩,马军,张冬梅,韩晓晖.用户评论中的标签抽取以及排序[J].中文信息学报,2012,26(05):14-19.
[51].郗亚辉.产品评论特征及观点抽取研究[J].情报学报,2014,33(03):326-336.
[52].彭云. 提取商品特征和情感词的语义约束LDA模型研究[D]. 江西财经大学, 2016.
[53].Huang H, Liu Q, Huang T. Appraisal Expression Recognition Based on Generalized Mutual Information[J]. JCP, 2013, 8(7): 1715-1721.
[54].赵妍妍,秦兵,车万翔,刘挺.基于句法路径的情感评价单元识别[J].软件学报,2011,22(05):887-898.
[55].王娟, 曹树金, 谢建国. 基于短语句法结构和依存句法分析的情感评价单元抽取[J]. 信息系统, 2017,40(3):107-113.
[56].方明,刘培玉.基于最大熵模型的评价搭配识别[J].计算机应用研究,2011,28(10):3714-3716.
[57].王素格,吴苏红.基于依存关系的旅游景点评论的特征—观点对抽取[J].中文信息学报,2012,26(03):116-121.
[58].陶新竹,赵鹏,刘涛.融合核心句与依存关系的评价搭配抽取[J].计算机技术与发展,2014,24(01):118-121.
[59].聂卉,杜嘉忠.依存句法模板下的商品特征标签抽取研究[J].现代图书情报技术,2014(12):44-50.
[60].姚兆旭, 马静. 面向微博话题的“主题+观点”词条抽取算法研究[J]. 现代图书情报技术, 2016, 32(7):78-86.
[61].江腾蛟, 万常选, 刘德喜,等. 基于语义分析的评价对象-情感词对抽取[J]. 计算机学报, 2017, 40(3):617-633.
[62].吴双. 基于依存句法分析的Web金融信息情感极性单元抽取[D]. 江西财经大学, 2015.
[63].孙晓,唐陈意.基于层叠模型细粒度情感要素抽取及倾向分析[J].模式识别与人工智能,2015,28(06):513-520.
[64].陈兴俊,魏晶晶,廖祥文,简思远,陈国龙.基于词对齐模型的中文评价对象与评价词抽取[J].山东大学学报(理学版),2016,51(01):58-64.
[65].杜思奇, 李红莲, 吕学强. 基于汉语组块分析的情感标签抽取[J]. 情报理论与实践, 2016, 39(5):125-129.
[66].张璞,李逍,刘畅.基于规则的评价搭配抽取方法[J].计算机工程,2019,45(08):217-223.
[67].李良强,徐华林,袁华,邵培基.基于最大频繁模式的在线评论标签抽取[J].信息系统学报,2016,16(1): 125-129.
[68].姚兆旭. 基于WSO-LDA的微博话题“主题+观点”词条抽取算法研究[D]. 南京航空航天大学, 2017.
[69].刘臣,韩林,李丹丹,安咏雪,霍良安.基于汉语组块产品特征——观点对提取与情感分析研究[J].计算机应用研究,2017,34(10):2942-2945.
[70].李大宇,王佳,文治,王素格.面向电影评论的标签方面情感联合模型[J].计算机科学与探索,2018,12(02):300-307.
[71].刘涛.基于特征的中文在线评论观点挖掘系统的研究与实现[D]. 东南大学, 2017.
[72].王忠群,吴东胜,蒋胜,皇苏斌.一种基于主流特征观点对的评论可信性排序研究[J].数据分析与知识发现,2017,1(10):32-42.
[73].李志义,王冕,赵鹏武.基于条件随机场模型的“评价特征-评价词”对抽取研究[J].情报学报,2017,36(04):411-421.
[74].王晓宇.网络评论标签提取的研究与实现[D]. 北京邮电大学, 2018.
[75].刘三女牙,彭晛,刘智,孙建文,刘海.面向MOOC课程评论的学习者话题挖掘研究[J].电化教育研究,2017,38(10):30-36.
[76].廖祥文, 许洪波, 孙乐,等. 第三届中文倾向性分析评测(COAE2011)语料的构建与分析[J]. 中文信息学报, 2013, 27(1):56-63.
[77].戴敏,朱珠,李寿山,周国栋.面向中文文本的情感信息抽取语料库构建[J].中文信息学报,2015,29(04):67-73.
[78].Kim S M. Determining the sentiment of opinions[C]. Proceedings of the 20th international conference on Computational Linguistics, Geneva, Switzerland. Stroudsburg, PA, USA: Association for Computational Linguistics. 2004: 1367-1373.
[79].Ian J. Goodfellow, Yoshua Bengio, Aaron C. Courville. Deep learning[M]. MIT press, 2016.
[80].John D. Lafferty, Andrew McCallum, Fernando C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]. Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, CA: Morgan Kaufmann Publishers Inc.. 2001: 282-289.