参考文献/References:
[1] 李晓明, 张绒. 慕课:理想性、现实性及其对高等教育的潜在影响[J]. 电化教育研究, 2017,38(2): 62-65.
[2] Chango W, Cerezo R, Romero C. Multi-source and multimodal data fusion for predicting academic performance in blended learning university courses[J]. Computers & Electrical Engineering, 2021, 89: 106908.
[3] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[M]//Recommender systems handbook. Springer, Boston, MA, 2011: 1-35.
[4] Lonjarret C, Auburtin R, Robardet C, et al. Sequential recommendation with metric models based on frequent sequences[J]. Data Mining and Knowledge Discovery, 2021, 35(3): 1087-1133.
[5] 程岩. 在线学习中基于群体智能的学习路径推荐方法[J]. 系统管理学报, 2011,20(2): 232-237.
[6] 吴雷, 方卿. 基于改进粒子群算法的学习路径优化方法[J]. 系统科学与数学, 2016,36(12): 2272-2281.
[7] 桂忠艳, 张艳明, 李巍巍. 基于行为序列分析的学习资源推荐算法研究[J]. 计算机应用研究, 2020,37(7): 1979-1982
[8] Mnih V, Heess N, Graves A. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems(NIPS2014), 2014: 2204-2212
[9] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS2017), 2017: 6000-6010.
[10] 张青博, 王斌, 崔宁宁, 等. 基于注意力机制的规范化矩阵分解推荐算法[J]. 软件学报, 2020,31(3): 778-793.
[11] 沈学利, 杜志伟. 融合自注意力机制与长短期偏好的序列推荐模型[J]. 计算机应用研究, 2021,38(5): 1371-1375.
[12] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized markov chains for next-basket recommendation[C]//Proceedings of the 19th international conference on World wide web(WWW2010), 2010: 811-820.
[13] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks[J/OL]. arXiv preprint arXiv:1511.06939, 2015. https://arxiv.org/abs/1511.06939