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Abstract Cloud computing technologies are established by virtualization technologies to establish a connected 

resource processing pool in a 5G cloud radio access network（C-RAN）. This enables operators to reduce 

capital expenses. However，C-RAN operating expenses are typically ignored due to the complex challenges 

of using limited resources to deliver a satisfactory quality of experience（QoE）to users. Relevant issues 

of scalability and flexibility in resource management are considered in this dissertation. We considered an 

operator’s standpoint to focus on communication（network）and computation（system）perspectives； we 

analyzed the influenced factors，such as task call admission control，resource allocations，scheduling，and 

server operations in services computing for a sustainable network evolution. The problems were formulated 

as mathematical programming problems. Approaches based on dynamic programming，bin packing，and 

Lagrangian relaxations were proposed to determine the operating decisions within several practical strategies. 

The strategies were not only created to satisfy the QoE requirement of applications，but also to investigate 

operating servers within a cost-efficient resource pool. The computational experiment results revealed that the 

compositions of decisions with task admission，resource allocation，scheduling，and server operations were 

sufficiently supportive to allow operators make decisions efficiently and effectively to achieve near-optimal 

system revenue by leveraging cloud technology in a 5G C-RAN. The strategies can serve as valuable references 

or guidelines for the planning and operations of 5G C-RAN network service providers.

Keywords C-RAN；QoE；Task Call Admission Control；Resource Scheduling；Server Operations；

Lagrangian Relaxation.

Introduction
A fifth-generation（5G）mobile communication 

system service will be launched in 2020. Cisco 

predicts that global IP traffic will triple from 59.9 

exabytes（EB）per month in 2014 to 168 EB 

per month by 2019，as forecasted by the tenth 

annual Cisco Visual Networking Index Forecast 
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[1]. Several research projects have been developed 

based on a wireless service with a high capacity，

high data rate，large amount of massive device 

connectivity，and high energy efficiency，but 

low end-to-end delay. Another research group 

proposed an overall system that could technically 

support the following ideas as improvements 

over today's networks [2]：（a）a 1000-fold 

increase in data volume per area，（b）a 10- 

to 100-fold increase in the number of connected 

devices，（c）a 10- to 100-fold increase in the 

typical user data rate，（d）a 10-fold extended 

battery life for low power massive machinetype 

communication（mMTC）devices，（e）a five-

fold reduction in end-to-end（E2E）latency [3]. 

These requirements should be fulfilled with cost 

and energy efficiency similar to current cost and 

efficiency.

To provide a common connected platform 

for a variety of applications and requirements for 

5G，some technology components should be 

reconsidered. The traditional role of base stations 

could be divided into two parts，remote radio 

heads（RRHs）and baseband units（BBUs），

which would be installed at the fronthaul and 

backhaul，respectively. At the fronthaul，new 

mmWave and new transmission and reception 

transmission technologies with massive multiple-

input multiple-output（MIMO）antennae have 

been developed for multiple access control 

and radio resource management advanced by 

complex and multiple radio access technologies

（RATs）and internode coordination schemes 

in heterogeneous networks（HetNets）such as 

3G，4G，5G，sensors，and device-to-device

（D2D）networks. At the backhaul，5G radio 

access networks（RANs）have been proposed as 

a cloud architecture called the cloud radio access 

network（C-RAN）. The system architecture is 

illustrated in Figure 1. 

 Figure 1   System architecture in 5G

The BBUs are clustered as a BBU pool and 

centralized to deal with the signal processing 

resources by being dynamically allocated to 

servers.  Cloud computing technology can 

provide flexibility and scalability to satisfy 

user requirements，and the BBUs can share 
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their computing resources in a pool. To provide 

l a rge-sca le  p rocess ing  and  management 

capabilities，centralized BBU management 

allows the implementation of efficient radio 

resource management（RRM）algorithms，

which have several advantages over traditional 

cel lular  architectures，such as increased 

resource utilization efficiency，and low energy 

consumption and light interference [4，5]. The 

issues of scalability and flexibility of RRM in 

C-RAN are the most pertinent concerns in relation 

to 5G [4，6，7].

The factors related to sustainable network 

evolut ion  for  new resource  management 

mechanisms influence operations，such as 

call admission control，resource scheduling，

and network operations，are subject to rapidly 

increasing data traffics，the limited budget of 

resource pool，and constraints. The cost function 

is conducted based on CAPEX and OPEX，which 

can be analyzed as a minimum problem subject to 

user or BBU allocation constraints [8]. The challenge 

is that operators must provide a good quality of 

experience（QoE）to users with affordable costs.

Scalability and flexibility in resource management 

in C-RAN are critical. 

In  this  paper，we focus on resource 

optimization management issues in operating 

stages to formulate problems as a mathematical 

programming form for the maximization of system 

revenue. A Lagrangian relaxation-based approach 

is proposed to determine the operating decisions 

within some designed practical scenarios.

The remainder of this paper is organized 

as follows： In Section 2，we present the 

literature review related to the current ideas and 

mechanisms for the emerging technologies in 

5G. Section 3 gives the problem definitions of 

resource management in C-RAN and the problem 

is formulated as a mathematical form. The 

proposed solution approach contains dynamic 

programming，bin packing algori thms，

Lagrangian Relaxation methods，and heuristics 

are developed to find the primal feasible 

solutions in Section 4. Section 5 presents various 

computational experiments and the results 

are correspondingly discussed and validated. 

Finally，the conclusions are drawn and the future 

work are described in Section 6.

Related Work
T h e  m a j o r  c o n c e r n s  o f  w i r e l e s s 

communication networks inspired from the 

system architecture in 5G have changed； radio 

access networks have been adopted. Virtualization 

technology has been used for cloud computing 

in the IT field. Various challenges and research 

problems can be derived and discovered through 

considering new radio resources’（BBUs，

servers in C-RAN，assignment of resources，

etc.）compliance with unique requirements such 

as wireless network virtualization（WNV），

sof tware  def ined  ne twork ing（SDN），

and network function virtualization（NFV）

in 5G. This can improve 5G’s efficiency and 

effectiveness compared with existing technologies. 

From an operator’s perspective，cloud computing 

service providers support share-based services in 

a pay-as-you-go format. This provides a flexible 

and lower CAPEX architecture to operators. 
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However，resource management is a key issue 

with complex on-demand traffic. New network 

paradigms may increase the OPEX and decrease 

the QoE for dissatisfied end-users，unless 

appropriate resource allocation mechanisms can 

be provided.

Resource Allocation and Scheduling

Resource  a l loca t ion  and  schedu l ing 

algorithms are used in numerous research 

areas，such as transportation management，

industrial management，operational research，

and computer science，especially in real-

time operating systems [9]. Several scheduling 

algorithms have been proposed in [10].  For 

example，earliest deadline first（EDF）is a 

dynamic scheduling algorithm used in real-time 

operating systems to allocate computing resources 

in CPUs as a priority queue. The queue is 

implemented to search for the task that is closest 

to its deadline； if a task cannot be finished within 

its deadline，the operating system must release 

the task. In the case of multiprocessor systems，

a proportionally fair scheduling algorithm is a 

compromise-based scheduling algorithm. The 

main idea is to maximize the resource utilization 

for several competing interests while maintaining 

a load balance. It can be done by assigning a 

weight priority for each data flow that is inversely 

proportional to that flow’s anticipated resource 

consumption [11，12]. Ding et al. proposed a Linux 

scheduling policy with a priority queue instead 

of a FIFO queue to improve the performance of a 

Kernel-based Virtual Machine（KVM）[13]. Online 

VM placement algorithms to allocate resources 

to VMs with a cost-efficient way were proposed 

by Zhao et al. to increase cloud providers’ 

revenue in a managed server farm. First-Fit

（FF），First-fit-migration（FFM），least 

reliable first（LRF），and decreased density 

greedy（DDG）algorithms are relevant packing 

strategies，as those methods can optimize tasks to 

achieve desirable performance metrics [14].

The growth of IoT traffic has seriously affected 

the performance of mobile networks [8]. With new 

mobile services，users of all ages want to share 

information widely through mobile broadband 

networks（MBNs） .  The consequence is 

that the quality of experience（QoE）is not 

consistent； a user might have high QoE with a 

basic scenario，but QoE might degrade as that 

user encounters increasingly complex scenarios. 

The QoE of resource-intensive and latency-

sensitive applications，such as interactive high-

definition video streaming，online gaming，

becomes degraded when users must employ 3G 

or 4G technologies. It is not sufficiently scalable 

and flexible to optimize individual scenarios with 

dynamic traffic loads [15]. To improve mobile users’ 

QoE，the coordinated allocation of computing 

resources for 5G wireless communications is a 

critical issue [16]. Zhai et al. proposed resource 

allocation algorithms to manage the utilization of 

servers under bursty and varying traffic [17]. 

In relation to workload，Ran and Wang 

proposed a cost-saving scheme for allocating 

resources. The key idea was to minimize the 

number of macro BSs to balance the consumption 

of resources. Minimal power consumption is 

a cost saving method in CAPEX and OPEX 

infrastructures [18]. Lu et al. proposed a dynamic 
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resource allocation mechanism to improve the 

resource pool utilization and spectrum efficiency 

according to a Karnaugh map and a genetic 

algorithm [19].

Bin Packing Problems

The previous algorithms of the bin packing 

problem had been associated with table formatting，

prepaging，packing of tracks on a disk，or stock 

cutting problems encountered in the industry [20，21]. 

Methods such as next fit，first fit，best fit，and 

worst fit were analyzed [22]. The problems were 

considered for finite numbers of tasks running 

on finite numbers of servers，which are subject 

to a limited capacity. Namely，the total number 

of tasks allocated to any server cannot exceed 

the server’s capacity. The objective is to pack 

the maximum number of taskson the minimum 

number of servers. The next fit packing rule was 

proven to assign tasks to servers intuitively and 

sequentially [22]. In the first fit packing rule，the 

first server is monitored in relation to an assigned 

task if the task fits the residual server capacity. 

Best fit involves choosing the best server，which 

has the least remaining capacity，and assigning 

each task iteratively until all servers are full. A 

new server is switched on to serve the next task 

that arrives. For the worst fit，the remaining 

capacities of all servers are considered，and the 

next task is assigned to the server that possesses 

the maximum residual capacity. If the task 

does not fit in any server，then a new server 

is established. If the input list is in descending 

order，the algorithms have different behaviors 

regarding the packing rules. It is difficult to 

determine an optimal solution for the bin-packing 

problem due to it being NP-complete problem [23]. 

In the IT field，Jin et al. proposed a stochastic 

bin-packing algorithm to overcome resource 

allocation problems. The objective function was 

to minimize the number of required servers while 

satisfying the service-level agreement（SLA）

availability guarantee [24]. In considering the 

resources or tasks that are migrated between 

hosts，most researchers analyze ideas in the 

computer science field and consider the practices 

of data centers. Multicore processor scheduling 

algorithms are broadly classified into partitioned 

scheduling，semipartitioned scheduling，and 

global scheduling [25].

Problems of Cost 

Network service providers encounter 

underprovisioning or overprovisioning problems 

caused by time-varying demands and seasonal or 

periodical changes regarding on-demand services. 

Deployed infrastructure is not easy to change 

rapidly，due to the expansion cost related to the 

investment strategy of operators. Therefore，

efficient and effective resource scheduling 

operating mechanisms are expected to conserve the 

operating costs and to meet the QoE requirements 

during the interim period [26]. If the resource 

demands are stochastic，an accurate forecast of 

the resource demand is difficult. Historical data 

usage is measured to estimate data demand in the 

future. Bobroff et al. have proposed a methodology 

for developing a framework to predict the probability 

distribution of demand values for multiple intervals 

ahead more precisely [27，28]. Beloglazov et al. 

suggested a decentralized architecture for resource 

management systems in data centers. One can 
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consider network bandwidth and the temperatures 

of servers to develop policies； one can decide 

to reallocate resources to reduce data transfer 

overhead and network devices load [29]. If a system 

does not have servers that are homogeneous in 

terms of their CPU，memory，or storage，

then，the types of demands can be dynamically 

simulated as arriving over time. Ghaderi proposed 

efficient and scalable scheduling algorithms to 

maximize the average number of users served by 

a system over time [30]. If the resource routing and 

placement problem is considered，the long-term-

averaged performance can be determined using a 

Markov decision process，and a real traffic trace 

can be evaluated and jointly formulated as an 

optimization problem，as in [31]. 

Wang et al. considered a global fixed priority 

scheduling based on a problem window with 

a preemption threshold in adopting multicore 

processor  schedul ing；  the  opt imizat ion 

objective was minimizing system stack memory 

requirements [32]. Regarding energy consumption 

in clouds，minimizing the number of running 

servers and packing all virtual machines is 

the optimal solution. Chen et al. designed a 

practical algorithm in which an initialization of 

resource allocation consolidates with a spatial 

and temporal-awareness mechanism to detect the 

resource utilization patterns to maximize energy 

efficiency and reduce the overheads involved 

in migrations [33]. Centralized management is 

beneficial to control groups of resource pools to 

reduce operational costs and energy consumption. 

In relation to dynamic resource demand，a data 

center must efficiently centralize its management 

of decisions in a resource pool to optimize system 

utilities and energy consumption. A pertinent issue 

is the resource location being allowed to migrate 

between servers in a pool [34]. Zhang et al. analyzed 

methods for reducing the computation effort，

which were denoted as virtual machine placement 

problems. They proposed heuristic offline and 

online algorithms to guarantee QoE and cost 

savings [35].

These concepts for IT，computer science，

and data centers can also be applied to wireless 

communication. C-RAN enables the centralization 

of baseband resources，which was proposed as 

a pooling system on a general purpose processor

（GPP）for long-term evolution（LTE）and 

worldwide interoperability in a microwave access

（WiMAX）media access control（MAC）

layer [36]. Guan et al. designed a task controller to 

dynamically assign resources for tasks processing [36]. 

Agata et al. proposed an algorithm that allows the 

core network to be designed as a ring topology to 

decrease the total cable installation cost through 

shortening the total cable “construction” length 

between the core network and RRHs [37]. Peng et 

al. suggested a threshold-based switching strategy 

to switch on or off some low-power nodes based 

on traffic loads to increase energy savings [38].

Mathematical Formulation

Software as a service（SaaS）providers 

must be responsive to users’ requests within 

an acceptable deadline determined in their 

service level agreement contracts，whereas 

infrastructure as a service（IaaS）providers are 

mostly concerned with infrastructural resources. 

The goal of SaaS providers is to maximize the 
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revenue from SLAs and minimize the cost of 

using IaaS resources. IaaS providers want to 

maximize the utility of their own resources 

charged to their clients，and minimize the total 

cost of infrastructural resources at the same time. 

Each provider’s decisions may influence the other 

providers’ strategies [39]. 

In this section，we analyze an operator 

perspective，and integrate the roles of SaaS and 

IaaS providers to propose a centralized computing 

resource management mechanism in operating 

stages to optimize the total revenue through 

admission control，weighted task scheduling，

and server operations. An abstract modeling and 

system framework are separately provided in 

Figure 2 and 3. At the fronthaul，the tasks are 

represented as the user computing requirements 

with values，demands of computing resources，

processing，and waiting time requested from 

RRHs. At the backhaul，the servers have different 

levels of finite computing resources with costs. 

The BBUs are managed by resource allocation 

and server operation mechanisms in a centralized 

server pool in 5G C-RAN. For example，an 

application is required by RRHs to request several 

computing resources（CPU and memory）. If the 

operator administrator grants the user access to the 

network，the resources should be reserved as a 

task to be satisfied. In a C-RAN numerous servers 

have a number of CPU cores，with processing 

capabilities for each CPU core，and separate 

memory capacity. 

T h i s  p r o b l e m  w a s  f o r m u l a t e d  a s  a 

mathematical programming problem subject to 

several constraints. Different level of servers 

have costs related to different levels of computing 

resource capacities. Generally，all tasks are 

admitted as soon as possible to maximize the 

total revenues，but the available supply of 

resources and the demand for them are usually 

unbalanced. It is a trade-off to determine which 

tasks are selected with maximum values subject to 

assigning tasks to servers efficiently with limited 

capacity through well-designed operations. The 

fees of servers heavily depend on the instance 

type（dependent on CPU and RAM）used. The 

server cost is calculated by choosing a pay-as-

you-go strategy. It is quite similar to Amazon 

Elastic Compute Cloud（Amazon EC2）for 

flexibility and scalability to scale up and down by 

traffic loads. The decision of switching on or off 

servers is significantly influenced by the cost. The 

dynamics of the RRHs traffic load is simulated 

and treated as a package of BBU demands called 

tasks with CPU processing power and memory 

requirements. The objective is the maximization 

of the total profits of tasks against the setup 

cost of servers by controlling decision variables 

appropriately. The first decision variable is jointly 

considered in three dimensions. The first is 

considering when tasks arrive which one of them 

should be assigned to which server，and in which 

time intervals. The second is which server should 

be turned on or off and in which time intervals. 

The third is determining how many servers should 

be switched on during all periods of time to 

calculate the setup cost.
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The constraints are the assignment task 

cons t ra in ts  where  the  CPU and  memory 

requirements of each task are not separately 

divided into different servers. Capacity constraints 

are the assigned demands，which must not exceed 

the capacity of the servers. Server switching on 

or off constraints are related to the operation 

policy. For example，there should be at least one 

server operating in the system at any time interval. 

The number of servers switched on is set to one 

whereas no demands exist for task arrivals. 

The key idea of our resource allocation 

scheme is to optimize the total profits minus the 

setup cost of operating servers in C-RAN by 

choosing decisions that depend on constraints 

being satisfied. The benefits can be estimated 

Figure 2  Abstract modeling

Figure 3   System framework
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as follows： The maximum resource utilization 

will be achieved. The fairness of tasks can be 

achieved which means all tasks are served as soon 

as possible. The servers can be utilized with great 

precision，which means an appropriate number 

of servers are used. The scope and problem 

definitions are listed in Table 1. The mathematical 

model formulation was addressed and the given 

parameters and the decision variables are listed in 

Table 2 and 3，respectively.

Mathematical Model

BBUs are simulated as tasks to operate as 

VMs which are deployed on PMs related to the 

IT field. A limited number of VMs can be served 

simultaneously with capacity constraints [40]. 

Operators must have clear admission mechanisms 

for VM admission control which require a trade-

off between assignments and limited resources. 

Admission control policies are defined according 

to different  requirements such as system 

utilization，task call-blocking probabilities，

or users’ expectations in a cloud system. In 

this section，the call blocking-probability of 

a requirement is considered. We assumed that 

incoming requests arrive at the beginning of the 

admission control process. The inter arrival or 

departure followed exponential distributions. 

Operators must utilize appropriate admission 

control，resource allocation，server operation 

mechanisms to obtain the maximum system 

revenue subject to several constraints. 

Table 1  Scope and problem definitions of IP

Model： Task scheduling and server operations

Problem Assumptions There are finite tasks and servers in our model 

Each task is simulated as a BBU requesting a package of 

CPU processing power and memory requirements

Each server has a finite capacity of CPU processing power and memory for 

allocation to BBUs

Each server has a setup cost，which has a fee when the server is switched on 

When an allocating server is switched off，the delay of migration of BBUs from 

the allocating server to others is ignored

At least one server is serving or switched on for receiving BBUs

Given parameters The set of servers has a capacity of CPU and memory

The requirement of each task is generated randomly

The setup cost of servers is generated by a fixed cost rate related to the CPU 

and memory capacity and by the extended setup cost related the number of times 

a server is re-switched on after initialization

The maximum number of servers is predefined

Constraints Assignment task constraints 

Server capacity constraints 

Server switching on or off constraints



理论研究

63

Model： Task scheduling and server operations

Objective To maximize the total profits of assigned tasks minus the setup cost of servers 

by determining optimal resource allocation in C-RAN

To determine Whether or not a task is allocated，and if so，to which server in which time 

interval 

Which server should be turned on or off，and in which time interval 

The total number of servers required to be switched on

Solution Approach Lagrangian relaxation method

Table 2  Notations of the given parameters in IP

Notation Description

S The index set of physical servers in C-RAN，which is  {1，2，3，…，s}

I The index set of tasks for processing BBUs，which is  {1，2，3，…，i}

T The index set of decision intervals，which is  {1，2，3，…，τ}

Ps The number of CPU cores in a server s∈S

Cs The processing capability（GHz）of each CPU core in a server s∈S

Ms The RAM capacity in a server s∈S

Di Total amount of CPU processing capability rate（GHz）required by task i∈I

Ri Total amount of RAM rate required by task i∈I

Vi The reward rate of task i∈I，which is a function of the demands of CPU or memory.

γi

The processing time required by task i∈I，which is the mean processing time of long-term 

statistics（length of time per task）.

Ni A penalty of task i∈I if it is rejected when the requirement is not satisfied.

As Set-up cost rate of server s∈S

Es Extended set-up cost of server s∈S

δτi

Indicator function which is a binary parameter，1 means task i∈I arrives at the time interval 

τ∈T，0 otherwise.

ε A tolerance of time delay for a task when it arrivals and obtains services completely.

O A number of switching on server

tτ Time τ

K Task call blocking requirement
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To optimize the total revenue of the whole 

system in operation，the objective function ZIP 

comprised of the values of maximum tasks that are 

assigned must subtract the setup cost of servers 

in the C-RAN. Each setup cost rate depends on 

the capacities. There are two types of cost； one 

is setup cost rate As； the other is extended setup 

cost Es. As is counted when the server is switched 

on per unit of time，and the total setup cost is 

determined by the on-going time intervals like 

Amazon EC2. The other cost Es，is the extended 

setup cost that is counted when the server is 

switched on or off one at a time after the server 

initialization，repeatedly. 

The value of Es was designed to be greater 

than As in the experiments. If tasks were not 

served， there was a penalty added in the 

objective function. All terms were composited 

into the objective function，the decisions are 

the admission control variable，aτis，task call 

blocking variable，bi，server switch on or 

off，xτs，and extended switch on or off，yτs，

correspondingly. There is a trade-off of between 

the decisions during the network operations. 

The optimal value is determined not only by 

the cost effectiveness of servers offered in services 

but also the maximization of the total values of 

tasks assigned efficiently.

Objective function：

Table 3  Notations of the decision variables in IP

Notation Description

aτis 1 if task i∈I is assigned to server s∈S in a time interval τ∈T，and 0 otherwise

bi 1 if task i∈I is rejected，and 0 otherwise

xτs 1 if server s∈S is switched on in a time interval τ∈T，and 0 otherwise

yτs

The decision variable yτs is determined by xτs－x（τ－1）s，which means yτs is set to 1 to mark the 

server s power-on at time τ∈T from the previous time τ－1 is set as power-off，otherwise 

set to 0

uis Artificial variable，1 if task i∈I is assigned to server s∈S，and 0 otherwise
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Subject to the following constraints： 

Assign task constraints：（1）For each task 

i in a time interval τ，and the assignment is that 

task i should be assigned into one of the servers，

and 0 otherwise.
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（2）The constraint is that task i is assigned into any one of the servers during all time intervals.
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（3）The time slots of processing requested by task i is satisfied.

（9）described the total rate of blocking tasks should not exceed the task blocking rate requirement.

  拥塞指数(CI)=
自由流速度-实际速度

自由流速度   当CI>0时, (1)
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τ∈T
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i∈I
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τ∈T
∑
s∈S
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τ∈T
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s∈S

Esyτs (IP)
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s∈S

aτis ≤1 ∀i∈I,τ∈T (1)

∑
s∈S

∑
τ∈T

aτis

T
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


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γi-∑
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bi
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K (9)
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∑
s∈S

aτistτ ≤∑
τ'∈T

tτ'δτ'i+γi+ε ∀i∈I (6)
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（4）aτis≤xτs If only task i is assigned to the 

server s，the server s must be switched on，that 

means both aτis and xτs are set to 1. If task i is not 

assigned to any servers，aτis is set to 0，and xτs 

could be 0 or 1 otherwise.

  拥塞指数(CI)=
自由流速度-实际速度
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（5）and（6）defined the timing was 

assigned for task i in chronological order. It 

should be before the total requested time slots plus 

a delay tolerance，and after the timing of arrival.
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（7）and（8）illustrated the blocking 

decisions are both set to 1，meaning the requested 

time slots of processing are not satisfied，0 

otherwise.

  拥塞指数(CI)=
自由流速度-实际速度

自由流速度   当CI>0时, (1)

=0 当CI<0时,

ZIP =max∑
τ∈T
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Nibi-∑
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







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∑
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∑
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aτis ≤xτs ∀s∈S,i∈I,τ∈T (4)

∑
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s∈S

aτistτ ∀i∈I,τ∈T (5)

∑
s∈S

aτistτ ≤∑
τ'∈T

tτ'δτ'i+γi+ε ∀i∈I (6)

γi-∑
τ∈T
∑
s∈S

aτis

γi
≤bi ∀i∈I (7)

bi≤γi-∑
τ∈T
∑
s∈S

aτis ∀i∈I (8)

∑
i∈I

bi

|I|≤
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Capacity Constraints：（10）and（11）

illustrated the capacity constraints would be 

obtained intuitively that the total demands of tasks 

are only aggregated and assigned in the server s，

and should not exceed the capacity of the server 

s. In other words，if a new amount of traffic load

（CPU or memory）arrives and is assigned in the 

server s，it should not be larger than either one of 

the remaining resources of the server s.

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)
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Switching on or off constraints：（12）

For each time interval τ，the status of the server 

should be at least the number of servers that 

should be switched on and served.

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)

（13）The decision variable yτs records 

whether a host is turned on at time τ，determined 

by xsτ－xs（τ－1）when the host s is set to 1 for 

power-on at time τ and the previous time is set 

as power-off. Otherwise the host is set to 0，as 

formulated in（13）.

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)

（14）For security reasons，the total 

number of times the host is switched on or off 

should not be exceed a boundary in time period 

τ. Each host s requires power-on only when it is 

powered-off in the previous time slot. Thus，the 

total number of times the host is switched on is 

not higher than half of the total time slots.

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)

Lagrangian Relaxation-based 
Solution Processes

Relaxation

The solution procedure is based on the LR 

method. From analyzing（2），the decision 

variable aτis is confined by the ceiling function.

（2）was not relaxed into the objective function 

for the decomposition of variables. To overcome 

this issue，the problem was reformatted by 

introducing a new binary decision variable，uis.

（2）was replaced by（15）and（16）. The 

following section provides descriptions of（15）

and（16）.

aτis≤uis is marked whereas aτis is set to 1，uis 

must be set to 1. The physical meaning is that task 

i is assigned into the server s at the time interval 

τ； the assignment is also marked.

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)

From a similar consideration of the task 

assignment constraints，due to the task job not 

being separable，                   means that each task 

i should be assigned to only one of the servers. 

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)

∑
i∈I

aτisDi ≤xτsPsCs ∀s∈S,τ∈T (10)

∑
i∈I

aτisRi ≤xτsMs ∀s∈S,τ∈T (11)

O ≤ ∑
s∈S

xτs ∀τ∈T (12)

xsτ -xs(τ-1) ≤yτs ∀s∈S,τ∈T (13)

0≤ ∑
τ∈T

yτs ≤
T
2 ∀s∈S (14)

aτis ≤uis ∀s∈S,i∈I,τ∈T (15)

∑
s∈S

uis ≤1

∑
s∈S

uis ≤1 ∀i∈I (16)

ZIP was reformatted into standard form 

through as a minimization problem. Some of 

the constraints，(4)，(7)，(8)，(10)，(11)，

(13) and (15) were relaxed and multiplied by 

non-negative Lagrangian multipliers and added 

into the objective functions，respectively. The 
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relaxed problem is called the LR problem in 

such a way that the corresponding Lagrangian 

multipliers，μ1
τis，μ2

τs，μ3
τs，μ4

τs，μ5
i，μ6

i，μ7
τis and 

original decision variables. Based on the decision 

variables，five independent subproblems can be 

decomposed by the LR problem. 

The decomposed subproblems can be adopted 

through parallel computing and optimally solved. 

Descriptions of the LR problem and subproblem 

formulations are provided below.

ZLR = (LR)

min-∑
τ∈T

∑
s∈S

∑
i∈I

Viaτis +∑
i∈I

Nibi+∑
τ∈T

∑
s∈S

Asxτs

+∑
τ∈T

∑
s∈S

Esyτs +∑
τ∈T

∑
s∈S

∑
i∈I

μ1
τis(aτis -xτs)

+∑
τ∈T

∑
s∈S

μ2
τs(∑

i∈I
aτisDi-xτsPsCs)

+∑
τ∈T

∑
s∈S

μ3
τs(∑

i∈I
aτisRi-xτsMs)

+∑
τ∈T

∑
s∈S

μ4
τs(xsτ -xs(τ-1)-yτs)

+∑
i∈I

μ5
i(
γi-∑

τ∈T
∑
s∈S

aτis

γi
-bi)

+∑
i∈I

μ6
i(bi-γi+∑

τ∈T
∑
s∈S

aτis)

+∑
τ∈T

∑
i∈I

∑
s∈S

μ7
τis(aτis -uis)

min∑
τ∈T

∑
s∈S

∑
i∈I

-Vi+μ1
τis +μ2

τsDi+μ3
τsRi

-μ5
i

γi
+μ6

i +μ7
τis














aτis (SUB-1)

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs -μ4
(τ+1)s xτs ,∀τ<T

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)

Subject to constraints（1），（3），（5），（6），（9），（12），（14）and（16）. 

Decomposition

Subproblem 1（related to aτis）

Objective function：

Subject to constraints（1），（3），（5）

and（6）.  

The objective function of（SUB-1）can 

be divided into |T||I||S| subproblems，which can 

be viewed as a minimum cost problem with the 

coefficients. If the assigned parameter aτis is set to 

1，when the minimum coefficient is selected，

then the optimal solution can be determined. 

Running time is O（|T||I||S|log|T||I||S|）. The 

pseudo code is illustrated as follows：
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τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)



信息化理论与实践（2018 年）
Information Theory and Practice

68

Subproblem 2（related to xτs）

Objective function：

1 for each task i：

2  for each server s：

3   for each time t from arrival to deadline：

4      calculate the coefficient C[ t ][ i ][ s ]

5 sort C

6 select the minimum elements from C

7 record the result of this server

8 find the server with the best value and 

set decision variable a according to the result

ZLR = (LR)

min-∑
τ∈T

∑
s∈S

∑
i∈I

Viaτis +∑
i∈I

Nibi+∑
τ∈T

∑
s∈S

Asxτs

+∑
τ∈T

∑
s∈S

Esyτs +∑
τ∈T

∑
s∈S

∑
i∈I

μ1
τis(aτis -xτs)

+∑
τ∈T

∑
s∈S

μ2
τs(∑

i∈I
aτisDi-xτsPsCs)

+∑
τ∈T

∑
s∈S

μ3
τs(∑

i∈I
aτisRi-xτsMs)

+∑
τ∈T

∑
s∈S

μ4
τs(xsτ -xs(τ-1)-yτs)

+∑
i∈I

μ5
i(
γi-∑

τ∈T
∑
s∈S

aτis

γi
-bi)

+∑
i∈I

μ6
i(bi-γi+∑

τ∈T
∑
s∈S

aτis)

+∑
τ∈T

∑
i∈I

∑
s∈S

μ7
τis(aτis -uis)

min∑
τ∈T

∑
s∈S

∑
i∈I

-Vi+μ1
τis +μ2

τsDi+μ3
τsRi

-μ5
i

γi
+μ6

i +μ7
τis














aτis (SUB-1)

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs -μ4
(τ+1)s xτs ,∀τ<T

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)

Subject to constraint（12）. 

（SUB-2）can be divided into  |T | |S | 

subproblems. The decision variable xτs is set 

to 1 if the coefficient is less than zero in each 

subproblem. Considering the feasible region of 

the problem，the constraint（12）is a policy of 

system design in O. There should be at least O 

servers switched on in every time slot τ. If there is 

no coefficient of SUB2 less than 0，the minimal 

objective value of SUB2 is determined by there 

being O numbers of xτs set to 1，and otherwise 

set to zero. The running time is O（|T||S|）. The 

pseudo code is illustrated as follows：

1 for each time t：

2  for each server s：

3   calculate coefficient C given t，s

4 if C < 0：

5  set x[ t ][ s ] to 1

6 else：

7  store C

8 if open too less：

9  open servers with maximum C
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Subproblem 3（related to yτs）

Objective function：

ZLR = (LR)

min-∑
τ∈T

∑
s∈S

∑
i∈I

Viaτis +∑
i∈I

Nibi+∑
τ∈T

∑
s∈S

Asxτs

+∑
τ∈T

∑
s∈S

Esyτs +∑
τ∈T

∑
s∈S

∑
i∈I

μ1
τis(aτis -xτs)

+∑
τ∈T

∑
s∈S

μ2
τs(∑

i∈I
aτisDi-xτsPsCs)

+∑
τ∈T

∑
s∈S

μ3
τs(∑

i∈I
aτisRi-xτsMs)

+∑
τ∈T

∑
s∈S

μ4
τs(xsτ -xs(τ-1)-yτs)

+∑
i∈I

μ5
i(
γi-∑

τ∈T
∑
s∈S

aτis

γi
-bi)

+∑
i∈I

μ6
i(bi-γi+∑

τ∈T
∑
s∈S

aτis)

+∑
τ∈T

∑
i∈I

∑
s∈S

μ7
τis(aτis -uis)

min∑
τ∈T

∑
s∈S

∑
i∈I

-Vi+μ1
τis +μ2

τsDi+μ3
τsRi

-μ5
i

γi
+μ6

i +μ7
τis














aτis (SUB-1)

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs -μ4
(τ+1)s xτs ,∀τ<T

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)

Subject to constraint（14）.

（SUB-3）is analyzed as a combinatorial 

optimization problem，so-called a 0/1 knapsack 

problem. Given a set of items that are the 

decision variables yτs，each with a weight of 

server        ，and a value               ，the 

number of each item to include in a collection is 

determined so that the total weight is less than 

or equal to a given limit                       ，and the 

total value（Objective value）is as large（minus 

minimum）as possible. Two solution approaches 

of SUB-3（dynamic programming and heuristic）

are proposed and described as follows： 

Dynamic Programming of SUB-3： a dynamic 

programming technique is traditionally used to 

solve the 0/1 knapsack problem. The first step is 

developed from a recurrence relationship derived 

by mathematical inductions. The second step is 

the implementation of recursions. The following 

statements relate to the recurrence relationship and 

implementation process（SUB-3-DP）.

ZLR = (LR)

min-∑
τ∈T

∑
s∈S

∑
i∈I

Viaτis +∑
i∈I

Nibi+∑
τ∈T

∑
s∈S

Asxτs

+∑
τ∈T

∑
s∈S

Esyτs +∑
τ∈T

∑
s∈S

∑
i∈I

μ1
τis(aτis -xτs)
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∑
s∈S
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τs(∑
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τ∈T
∑
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γi
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μ6
i(bi-γi+∑

τ∈T
∑
s∈S

aτis)

+∑
τ∈T

∑
i∈I

∑
s∈S

μ7
τis(aτis -uis)

min∑
τ∈T

∑
s∈S

∑
i∈I

-Vi+μ1
τis +μ2

τsDi+μ3
τsRi

-μ5
i

γi
+μ6

i +μ7
τis














aτis (SUB-1)
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τ∈T

∑
s∈S
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i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs -μ4
(τ+1)s xτs ,∀τ<T
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τ∈T

∑
s∈S

As -∑
i∈I

μ1
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τsPsCs -μ3
τsMs +μ4

τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)
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∑
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μ7
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∑
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∑
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i
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τis














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τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs -μ4
(τ+1)s xτs ,∀τ<T
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τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)

ZLR = (LR)

min-∑
τ∈T

∑
s∈S

∑
i∈I

Viaτis +∑
i∈I

Nibi+∑
τ∈T

∑
s∈S

Asxτs

+∑
τ∈T

∑
s∈S

Esyτs +∑
τ∈T

∑
s∈S

∑
i∈I

μ1
τis(aτis -xτs)

+∑
τ∈T

∑
s∈S

μ2
τs(∑

i∈I
aτisDi-xτsPsCs)

+∑
τ∈T

∑
s∈S

μ3
τs(∑

i∈I
aτisRi-xτsMs)

+∑
τ∈T

∑
s∈S

μ4
τs(xsτ -xs(τ-1)-yτs)

+∑
i∈I

μ5
i(
γi-∑

τ∈T
∑
s∈S

aτis

γi
-bi)

+∑
i∈I

μ6
i(bi-γi+∑

τ∈T
∑
s∈S

aτis)

+∑
τ∈T

∑
i∈I

∑
s∈S

μ7
τis(aτis -uis)

min∑
τ∈T

∑
s∈S

∑
i∈I

-Vi+μ1
τis +μ2

τsDi+μ3
τsRi

-μ5
i

γi
+μ6

i +μ7
τis














aτis (SUB-1)

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs -μ4
(τ+1)s xτs ,∀τ<T

min∑
τ∈T

∑
s∈S

As -∑
i∈I

μ1
τis -μ2

τsPsCs -μ3
τsMs +μ4

τs xτs ∀τ=T
(SUB-2)

min∑
τ∈T

∑
s∈S

(Es -μ4
τs)yτs (SUB-3)

(∑
τ∈T

yτs)

(Es -μ4
τs)

(∑
τ∈T

yτs ≤
T
2

)

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

OPT[a][b]=

0 0 0 0 0 0 0
∞ ∞ C12 C13 C14 C15 C16

∞ ∞ ∞ ∞ C24 C25 C26

∞ ∞ ∞ ∞ ∞ ∞ C36

∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞





























C12=-1 C24=min[-5+(-1),-4]=-6

C13=min(-1,-4)=-4 C25=min[-9+(-4),-6]=-13
C14=min(-1,-4,-5)=-5 C26=min[-2+(-9),-13]=-13

C15=min(-1,-4,-5,-9)=-9

C13=min(-1,-4,-5,-9,-2)=-9

C36=min(-2+(-6),∞)=-8

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

n >
TIME

2

θ2=-1-(-4)=3 θ2 >θ3

Step 2： Implementation of Recursions：

SUB-3-DP

1	  for all TIME do	
2	  for all SERVER do
3	  Calculate the coefficient of objective function（coef.）
4	  for all SERVER do
5	  Get a column of coef.
6	  Set OPT[a][b]，a is # of take，b is total # of time
7	  for T=0 and 1 do
8	  Mark base
9	  for T=2~TIME do
10 	 for Take=1~TIME/2 do
11	  if Cb+OPT[a-2][b-1]<OPT[a-1][b] then
12	  Take，Set OPT[a][b]= Cb+OPT[a-2][b-1]
13	  else
14	     Not Take，set OPT[a][b]= OPT[a-1][b]
15	  Find minimum element of OPT[a][b] and get the column and row
16	  Set y[t][s]=1
17	  break；

Step 1： Recurrence Relationship：
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Example：

Val.     x    x    -1    -4    -5    -9    -2

Coef.   C0    C1    C2    C3    C4    C5    C6

        0     1     2     3     4     5      6 TIME

Running time： O（T2）

Lemma： for any number of takes in（14），the objective value is the minimum.

C12=－1                                                  C24=min［－5+（－1），－4］=－6

C13=min（－1，－4）=－4                           C25=min［－9+（－4），－6］=－13

C14=min（－1，－4，－5）=－5                     C26=min［－2+（－9），－13］=－13

C15=min（－1，－4，－5，－9）=－9

C13=min（－1，－4，－5，－9，－2）=－9

C36=min（－2+（－6），∞）=－8

Find minimum element of OPT[a][b] is C26. Mark y3s=y5s=1

Result is 

        0       1     2       3      4     5      6

1

yτs

TIME

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

OPT[a][b]=

0 0 0 0 0 0 0
∞ ∞ C12 C13 C14 C15 C16

∞ ∞ ∞ ∞ C24 C25 C26

∞ ∞ ∞ ∞ ∞ ∞ C36

∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞





























C12=-1 C24=min[-5+(-1),-4]=-6

C13=min(-1,-4)=-4 C25=min[-9+(-4),-6]=-13
C14=min(-1,-4,-5)=-5 C26=min[-2+(-9),-13]=-13

C15=min(-1,-4,-5,-9)=-9

C13=min(-1,-4,-5,-9,-2)=-9

C36=min(-2+(-6),∞)=-8

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

n >
TIME

2

θ2=-1-(-4)=3 θ2 >θ3

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

OPT[a][b]=

0 0 0 0 0 0 0
∞ ∞ C12 C13 C14 C15 C16

∞ ∞ ∞ ∞ C24 C25 C26

∞ ∞ ∞ ∞ ∞ ∞ C36

∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞





























C12=-1 C24=min[-5+(-1),-4]=-6

C13=min(-1,-4)=-4 C25=min[-9+(-4),-6]=-13
C14=min(-1,-4,-5)=-5 C26=min[-2+(-9),-13]=-13

C15=min(-1,-4,-5,-9)=-9

C13=min(-1,-4,-5,-9,-2)=-9

C36=min(-2+(-6),∞)=-8

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

n >
TIME

2

θ2=-1-(-4)=3 θ2 >θ3

Proof：（recursion induction in a proof）

Assume that OPTtake（n）is the minimum 

value of objective function at the time n. The 

proof is by deducing which statements match the 

following： 

If the time n is 0 and 1，OPTtake（0）



理论研究

71

and  OPTtake（1）a re  bo th  ze ro .  I f  t he 

time                      ，OPTtake（n）are all set to 

infinity.

If any of TIME n during 2 to TIME，the 

OPTtake（n）is the minimum.  

If the next time is n+1，the decision is not 

taken，and the optimal value of the objective 

value is the previous time n，OPTtake（n）. 

Otherwise，the decision is taken. The time 

is shifted to n-2，and the optimal value is 

determined by OPTtake（n-2）

Heuristic of subproblem 3： from a brief 

observation of constraint（14），if the decision 

variable yτs is set to 1 at time τ，the time τ－1 and 

τ+1 should be marked for y（τ－1）s and y（τ+1）s and 

both should be set to 0. The key is the coefficient 

calculations of the objective function of SUB-3. 

Choosing which one of yτs and setting to 1 on 

which server s at which time τ is applied through 

a concept of a sliding window. The following 

implementation process is described in the 

heuristic procedure. 

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

OPT[a][b]=

0 0 0 0 0 0 0
∞ ∞ C12 C13 C14 C15 C16

∞ ∞ ∞ ∞ C24 C25 C26

∞ ∞ ∞ ∞ ∞ ∞ C36

∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞





























C12=-1 C24=min[-5+(-1),-4]=-6

C13=min(-1,-4)=-4 C25=min[-9+(-4),-6]=-13
C14=min(-1,-4,-5)=-5 C26=min[-2+(-9),-13]=-13

C15=min(-1,-4,-5,-9)=-9

C13=min(-1,-4,-5,-9,-2)=-9

C36=min(-2+(-6),∞)=-8

OPT[a][b]=0 ∀a=0,b∈TIME

OPT[a][b]=∞ ∀a >
b
2

OPT[a][b]=min{Cb +OPT[a-2][b-1],OPT[a-1][b]} ,otherwise

n >
TIME

2

θ2=-1-(-4)=3 θ2 >θ3

Algorithm Heuristic

1	    for all TIME do 	

2 	    for all SERVER do 

3	    Calculate the coefficient of objective function（coef.）

4	    for all SERVER do

5	       for all TIME do

6	        if Ct＞0 then 

7	         Mark[t]=-1

8	         Calculate θt=Cn－Cn－1－Cn+1

9	      for T=2~TIME do 

10	       if θt＜θt+1 and Ct＜0 

11	    Mark[t]=1

12 	   Mark[t+1]=0

13 	   Find t with Mark[t]=1 and set to y[t][s]=1

14	    break；

Example：

Val.     x    x    -1    -4    -5    -9    -2

Coef.   C0    C1    C2    C3    C4    C5   C6

        0     1     2     3     4     5     6 TIME
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Steps 3–9： 	

θ2 =－1－（－4）=3                             θ2＞θ3

θ3 =－4－（－1）－（－5）=2               θ3＜θ4

θ4 =－5－（－4）－（－9）=8               θ4＞θ5

θ5 =－9－（－5）－（－2）=－2           θ5＜θ6

θ6 =－2－（－9）=7

Steps 10–15： Mark y3s=1，y2s= y4s=0，and y5s=1，and y4s= y6s=0

The result is 

Running time： O（T）

Subproblem 4（related to bi）

Objective function：

        0      1     2       3      4     5      6

1

yτs

TIME
θ3=-4-(-1)-(-5)=2 θ3 <θ4

θ4=-5-(-4)-(-9)=8 θ4 >θ5
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Subject to constraint（16）.

（SUB-5）can  be  d iv ided  in to  | I | |S | 

subproblems. The decision variable u is is 

always set to 1 from the brief observation of the 

objective function. However，considering the 

Dual Problem and Subgradient Method

According to the weak Lagrangian duality 

theorem [41]，for the multiples，μ1
τis，μ2

τs，μ3
τs，

μ4
τs，μ5

i，μ6
i，μ7

τis≥0，the objective value of the 

Lagrangian relaxation problem ZLR is a lower 

bound of the primal problem，ZIP. Based on the 
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1 for each task i：

2  for each server s：

3  find coefficient C[i][s] and sort C[i][s] in descending order

4 if find the max C[i][s] 

5  set u indices [s] to 1，return

6 otherwise set to 0
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where 0≤λ≤2.

Getting Primal Feasible Solutions

By applying the Lagrangian relaxation 

method and subgradient method to solve the 

subproblems，we can not only determine a 

theoretically lower bound from the primal 

feasible solution，but we also identified some 

helpful hints in relation to the primal feasible 

solution that are iterated when solving the dual 

problem. The feasible region of a mathematical 

programming problem defined by the solutions 

must be satisfied by all constraints. A set of primal 

feasible solutions to ZIP is a subset of the solutions 

to ZLR. Regarding obtaining the primal feasible 

solutions，several alternative methods based on 

observations can be used to modify the solutions 

of ZLR into the feasible region. The process is 

known as getting primal feasible solutions. The 

heuristic approach is proposed to find feasible 

solutions in next sections. To obtain the primal 

feasible solutions for（IP），the first step is 

to consider the solutions to the LR. Two major 
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decision variables，aτis and xτs are taken into 

consideration. 

For the purpose of evaluating our solution of 

quality，three algorithms，TABLE（task allocation 

by LR evaluation），ROTATE（reassignment of 

task aim to equilibrium），and TOWEL（turn 

off when evaluated lossy）are simultaneously 

implemented for result comparison. Block diagram 

is illustrated in Figure 4. 

Figure 4   Lagrangian Relaxation-based Solution Processes

Task Assignment and Scheduling 

The heuristic is proposed by the values of 

Lagrangian multipliers determined from the dual 

problem. The coefficient of the subproblems is 

the arc weight of importance with respect to the 

decision variable[43]. Through subproblems，the 

weighted factor of tasks to servers are represented 

from（SUB-1），in the form of στis=μ1
τis+μ2

τs Di+

μ3
τsRi－

μ5
i +μ6

i+μ7
τis； therefore，the sum of values 

can be used as an index to interpret the importance 

of task i to server s at the time τ. The algorithm 

is called TABLE（Task Allocation by LR 

Evaluation）shown in（17）.
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bis a residual buffer time of the task i. β is a 

power value for the evaluation of time which is 

set to 2 in the experiments. The set of assigning 

and scheduling decision variables was determined 

f rom the  corresponding mul t ip l ie rs .  For 

example：aτis≤xτs ，（4）indicates that if only 

task i is assigned to the server s，the server s must 

be switched on，and bothand are set to 1. If task 
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i is not assigned to any server，aτis is set to 0 and 

xτs could be 0 or 1.A brief illustration is shown in 

Figure 5，μ1
τis is determined in the updated cases 

to objective value of dual problem. It interprets a 

partial weighted objective value to the objective 

value. TABLE dynamically can make a task 

selection criterion related the value of multipliers 

to approaching the optimal objective value.

Server Operations

Regarding the server operation，a utilization 

factor of revenue was measured. The utilization 

factor was designed based on the ratio of allocated 

task value over the server cost at each time τ 

shown in（18）. The concept was derived from 

capacity constraints（10）and（11） .  The 

measurement is an index where if the value is 

greater than 1，the profit can cover the costs，

and the server has a positive effect and is turned 

on，otherwise it is turned off. The algorithm is 

abbreviated as TOWEL（turn off when a loss is 

evaluated）.

aτis≤xτs                         mu1 adjustment 

1
1

0

1
1

0

Feasible      No updated

Infeasible    Updated

Feasible      Minor Updated

Feasible      No updated

Figure 5  Feasibility Check for Constraint
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Time Stamping for Task Reassignments

Facing on the variety of traffic load，

the burst traffic occasionally leads to a system 

resource imbalance with a hard deadline or 

tight delay tolerance. To overcome this issue，

a procedure known as ROTATE（reassignment 

of task aim to equilibrium）is proposed. The 

basic idea is moderation of the burst-to-light 

traffic load with a reasonable delay tolerance. The 

major function of system utilization is a balanced 

approach that removes and reassigns some tasks 

from servers with heavy loads to servers with light 

loads within an acceptable delay tolerance.

Computational Experiments
Environment

In this section，the experiment environment 

is initialized according to problems related to 

C-RAN resource allocation，and a scheduling 

model is proposed in which tasks represented 

as BBUs request computing requirements and a 

resource pool with servers is set up for packing 

tasks. Algorithms constructed and implemented 

to analyze the heuristic quality were developed，

and performance evaluationswere conducted 

for several simulation cases. Our experiments 

were developed using the C++ programming 

language and implemented in a virtual machine as 

a platform with a quad-core processor，8 GB of 

random access memory（RAM），and Ubuntu 

version 14.04 as the operating system. The given 

amounts of traffic loads of tasks and arrival time 

intervals were randomly generated in Table 4 

which shows the values of the experimental 

parameters. 
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Performance Evaluation Cases

In our experiments，the solution of the 

dual problem was defined as LR. The initial 

solutions were determined by examining previous 

related works and improving them by sorting 

the weights of items in descending order，

denoted as first-fit（FF）and best-fit descending

（BF_Descending），respectively [22].  Our 

methods for obtaining solutions were derived 

through proposed algorithms such as TABLE，

TOWEL，and ROTATE，referred to as selected 

algorithms（SAs）. Two performance metrics 

are used to evaluate the solution quality，gap and 

improvement ratio. The gap and improvement 

ratios are respectively calculated as follows：   

θ3=-4-(-1)-(-5)=2 θ3 <θ4

θ4=-5-(-4)-(-9)=8 θ4 >θ5

θ5=-9-(-5)-(-2)=-2 θ5 <θ6

θ6=-2-(-9)=7

min∑
i∈I

(Ni-μ5
i +μ6

i)bi (SUB-4)

min-∑
i∈I

∑
s∈S

∑
τ∈T

μ7
τisμis (SUB-5)

∑
τ∈T

μ7
τis

ZD =maxZLR (D)

tk =λ
(Zh

IP -ZD(πk))
‖Sk‖2 .Zh

IP

στis =μ1
τis +μ2

τsDi+μ3
τsRi-μ5

i

γi
+μ6

i +μ7
τis

Indicatori=
Vi×∑

τ∈T
∑
s∈S

στis

PsCs ×Rs ×bβ ∀i∈I (17)

Uτs =
∑
i∈I

Viaτis

As
, ∀s∈S,τ∈T,xτs =1. (18)

GAP=
|SAi-LR|

|LR| ×100% andIR=
|SAi-SAj|

|SAj|
×100% .

θ3=-4-(-1)-(-5)=2 θ3 <θ4

θ4=-5-(-4)-(-9)=8 θ4 >θ5

θ5=-9-(-5)-(-2)=-2 θ5 <θ6

θ6=-2-(-9)=7

min∑
i∈I

(Ni-μ5
i +μ6

i)bi (SUB-4)

min-∑
i∈I

∑
s∈S

∑
τ∈T

μ7
τisμis (SUB-5)

∑
τ∈T

μ7
τis

ZD =maxZLR (D)

tk =λ
(Zh

IP -ZD(πk))
‖Sk‖2 .Zh

IP

στis =μ1
τis +μ2

τsDi+μ3
τsRi-μ5

i

γi
+μ6

i +μ7
τis

Indicatori=
Vi×∑

τ∈T
∑
s∈S

στis

PsCs ×Rs ×bβ ∀i∈I (17)

Uτs =
∑
i∈I

Viaτis

As
, ∀s∈S,τ∈T,xτs =1. (18)

GAP=
|SAi-LR|

|LR| ×100% andIR=
|SAi-SAj|

|SAj|
×100% .

several scenarios were designed for performance 

evaluations from different perspectives to analyze 

the decisions that influenced the objective 

function.

Table 4  Parameters for Computational Experiments

Parameter Value

Time interval（τ） 3–80

Number of tasks（I） 100–800

Number of hosts（S） 3–8

Host CPU capacity（PsCs） 250

Host memory capacity（Ms） 250

Host setup cost rate（As） 100

Reopen cost of a host（Es） 150

Value of each task（Vi） Random（rand（）%value+1）

CPU requests of a task（Di） Random（rand（）%cpu+1）

Memory requests of a task（Ri） Random（rand（）%memory+1）

A task i∈I arrives at time τ∈T（δi） Random（rand（）%time+1）

Uniform Traffic Load

This experiment was designed to analyze 

task arrivals with a uniform distribution，which 

can be interpreted as normal traffic for daily cases. 

First，we examined the trend of the objective 

function with the number of tasks as the control 

variable. The result in Figure 5 indicate that the 

objective value increased with the number of 

tasks. However，the curves for FF，ROTATE，

and TOWEL decreased when the number of tasks 

was more than 500，indicating that when the 

number of arriving tasks exceeded the system 

capacity，the tasks could not be handled. 

The dropping penalty reduced the objective 

value. The PRIMAL and TABLE methods 

exhibited increasing trends and moderated the 

dropping penalties through superior resource 

allocation and scheduling strategies in which tasks 

with high values were selected. 

Subsequently，
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Bursty Traffic Load

A bursty pattern is evident when numerous 

tasks arrive in a short period of time. This scenario 

was used to test how bursty arrival affected 

the objective value. Figure 6 shows the results. 

PRIMAL and TABLE were found to be superior 

to FF，TOWEL，and ROTATE. This is because 

when many tasks arrived in a short period of 

Figure 5   Evaluation of uniform traffic load vs. objective value

time，PRIMAL and TABLE had sufficient buffer 

time to reassign tasks，and tasks with high values 

were selected to be served within the finite server 

capacity. FF，TOWEL，and ROTATE showed 

characteristics similar to those seen in Figure 5. 

In cases where tasks were blocked，leading to a 

penalty，the total revenue was reduced to lower 

the objective value. 

Figure 6   Evaluation of bursty traffic load vs. objective value
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Server Deployment 

The cost function was considered to be 

CAPEX and OPEX. CAPEX relates to network 

infrastructure deployment of appropriate levels 

of servers，in which the budget was one of the 

major constraints. The cost difference between 

high- and low-end servers is usually considerably 

high. OPEX is related to the cost of network 

operations and management. Operators generally 

conduct a comprehensive system analysis to 

appropriately manage，control，or operate the 

system（by methods such as turning servers 

on or off）to provide substantial QoE to users 

efficiently and effectively. Both factors were 

emulated in this experiment，and the servers 

purchased were deployed in three levels with 

different capacities；this means that there were 

nonhomogeneous servers deployed under the 

same limited budget. The rapid increases in data 

traffic were represented as bursty traffic loads to 

determine which method delivered superior QoE 

for users with affordable costs and preserved 

revenue.

Experiments with different numbers of 

servers and capacity levels were designed to 

examine the effects of CAPEX and OPEX. The 

followings are the experimental scenarios tested.

Large： The system capacity is much higher 

than the total task demand. The physical meaning 

is that the CAPEX budget is unlimited，and 

the pool always has sufficient resource space in 

the servers. The blocking probability of tasks is 

almost zero irrespective of the operation method 

selected.

Medium： The CAPEX budget is limited 

such that the system capacity is close to the 

total task demand. The levels of servers are 

nonhomogeneous，implying that the different 

levels of servers that are allowed to be deployed 

tend to approach the limited budget under the 

maximum server capacity. Bursty task traffic loads 

may be blocked owing to insufficient resource 

space when a poor operation method is selected.

Small： The server capacities are much 

smaller than in the two aforementioned scenarios. 

All servers face a lack of resources in every 

experimental time slot. The operating methods 

become critical in that the bursty traffic loads 

arrive and decisions must be made to minimize the 

call-blocking rate of tasks and the resource cost to 

servers. A bottleneck occurs owing to insufficient 

resource space in servers，as all servers must 

generally be switched on all the time to serve 

tasks.

Table 5  Experimental Results in Case of Server Deployment

Server

 Capacity

Number of 

Servers
FF

BF_

Descending
TABLE TOWEL ROTATE PRIMAL LR

GAP

（%）

IR

（%）

Large

2 9.62 17.23 17.75 9.62 12.67 18.75 42.20 55.56 8.85

4 13.89 20.50 20.64 13.89 16.98 21.54 46.23 53.40 5.10

6 13.95 24.04 22.01 13.95 18.84 22.37 47.47 49.35 0.00

8 15.77 26.25 22.20 15.77 18.36 22.61 47.71 44.97 0.00

10 15.30 25.46 22.57 15.30 18.78 23.55 47.95 46.90 0.00
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Table 5 shows the results of these operating 

m e t h o d s （ L R ， G A P ， a n d  I R v a l u e s ） . 

Considering GAP，all values in each scenario 

were calculated to determine the maximum value 

of the difference between the methods（TABLE，

TOWEL，ROTATE，and  PRIMAL）and 

LR. IR，which is represented by the ratio of 

improvement of feasible solutions，is also 

calculated as the maximum value difference of 

methods between FF and BF_Descending

The results revealed that PRIMAL always 

has the best objective value among all methods 

in every scenario except in the case of numerous 

servers（6–10） .  When few servers were 

deployed，IR values were much higher than in the 

other two scenarios. The physical meaning is that 

small servers have flexible operating methods to 

control OPEX and CAPEX with limited budgets. 

The GAP values are approximately 40%–70%，

implying that the solution quality of our heuristics 

must be improved to make it optimal.

Evaluation of Processing Time

In general，the processing time is an implicit 

task parameter. There is no way to determine the 

specific time slots for the processing time of a 

requested task. However，the solution is usually 

emulated as a distribution for statistical analysis 

when the processing time becomes relatively 

large； proper resource allocation is difficult 

for such tasks. The occupied time slots for tasks 

require more system resources and decrease the 

probability that other tasks can be served with 

less residual resources. A short processing time 

means that the task only stays in the system for 

a short period of time. In this case，the request 

processing time slots follow a uniform distribution 

in an interval. For example，64 indicates that the 

processing time for task i varied from 1 to 64 and 

was distributeduniformly.

Figure 7 shows the results. All objective 

values increased with the processing time of 

tasks. The curves of all methods exhibited the 

Server

 Capacity

Number of 

Servers
FF

BF_

Descending
TABLE TOWEL ROTATE PRIMAL LR

GAP

（%）

IR

（%）

Medium

2 1.49 9.55 13.70 1.49 2.37 14.87 40.87 63.62 55.70

4 2.03 8.78 15.26 2.03 5.98 16.65 42.99 61.26 89.64

6 4.62 9.48 16.31 4.62 6.83 17.75 43.84 59.51 87.20

8 4.42 8.50 16.83 4.42 7.00 17.58 43.75 59.82 106.87

10 4.44 11.46 15.93 4.44 6.69 18.34 43.85 58.18 60.01

Small

2 -7.47 -5.47 8.62 -7.47 -5.52 8.78 28.72 69.45 260.47

4 -5.46 -4.01 8.52 -5.46 -4.13 10.37 29.59 64.96 358.55

6 -4.76 -3.68 8.56 -4.76 -2.88 10.56 29.77 64.53 386.59

8 -3.77 3.99 8.90 -3.77 -1.15 11.14 30.00 62.86 178.99

10 -4.12 -1.31 7.76 -4.12 0.28 10.47 29.72 64.76 899.47
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same increasing trends，and the objective value 

was generated by multiplying the task value by 

the processing time slot. The first observation 

from the results is reasonable. No significant 

difference exists between the operating methods 

when the processing time is relatively short. For 

the processing time，higher objective values 

than those of ROTATE and TOWEL should be 

considered. TABLE and PRIMAL select tasks 

with high values and assign them to the system. 

Figure 7   Evaluation of processing time vs. objective value

Evaluation of Allowed Waiting（Buffer）

Time

The allowed waiting time for each task is 

referred to as delay tolerance. The delay tolerance 

length is related to the type of applications 

requested by tasks，such as web browsing，

video streaming，or voice calls. The correlation 

between the waiting time and the objective value 

was considered in this case. Generally，a short 

waiting time for a task means it has less flexibility 

for task assignment or rescheduling. It also means 

that the blocking probability will be higher than 

for tasks with long delay tolerance. 

Figure 8 shows that different waiting times 

are designed for the tolerance lengths of tasks. 

Interestingly，the objective value monotonically 

increased for a buffer time of 1–20.

The objective value increased and then 

remained constant into the saturation region for a 

buffer time of 40–80. The permitted buffer time 

of 40 serves as a threshold for operators to set 

a QoE metric for the service level agreement of 

user requests with the maximum acceptable delay 

tolerance. 
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Evaluation of Task Block Penalty

In this section，we analyze how the task 

penalty affects the objective value. When the 

penalty is high，the objective value decreases 

as the number of tasks is determined； no other 

action can be performed to achieve the objective 

value. Figure 9 shows the result. When the task 

penalty increases linearly，the objective values 

decrease consistently.

Figure 8  Evaluation of allowed delay tolerance vs. objective value

Figure 9   Evaluation of task penalties vs. objective values
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Evaluation of Task Revenue Rate

This section examines the relationship 

between the expected revenue rate and the 

objective value. If the expected revenue rate 

is high，tasks with relatively high revenue 

rates increase the total profits. In this case，

the expected task revenue rate was set from 20 

to 100. Figure 10 shows the results. When the 

expected revenue rate is high，the objective value 

is also high. When the revenue rate is high，

the difference between BF_Descending and 

PRIMAL increases slightly. This is because the 

curve reported by BF_Descending only showed 

the loading of tasks and did not show the revenue. 

As a task with high demand does not guarantee a 

correspondingly high profit rate，the task with the 

highest demand is simply assigned as such，and 

the system will fail to identify the most profitable 

tasks.

Figure 10  Expected task revenue rate

Evaluation of Server Cost Rate

The last part of our experiments examined 

the effect of the increasing cost rate of the servers. 

The trend of the curve was similar to that in the 

previous case for the task penalty section because 

when the cost rate was high，the objective value 

decreased. Figure 11 shows the result. There was 

a linear relationship between the cost rate and 

the objective value，as a change in the cost rate 

reduced the objective value because the number 

of active servers in the serving status for all tasks 

under other conditions did not change. 
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Conclusions
I n  t h i s  p a p e r ， w e  f o c u s e d  o n  t h e 

communication and computation resource 

management problems in 5G C-RANs. This 

work can improve QoE at the fronthaul from the 

customer’s perspective. This work can improve 

the utility of the computing resource pool at 

the backhaul from a network service provider’s 

perspective.

Resource admission control and scheduling 

were the goal to apply resource management to 

offer optimal QoE to users in environments with 

rapidly changing complex on-demand traffic loads. 

The influenced factors were studied through a 

combination of decisions with resource allocation 

and scheduling by taking both the system 

perspective and network perspective into account. 

Lagrangian relaxation was proposed as the near-

optimal approach to determine primal feasible 

solutions. Decision variables were successfully 

decomposed into subproblems and optimally 

solved. The results are related to decisions； they 

significantly influence the system performance； 

the proposed solutions exhibit the advantages of 

flexibility and scalability for cloud computing in 

C-RAN.Near-optimal primal feasible solutions 

were determined efficiently and effectively； 

these solutions offered beneficial services that 

achieved maximum revenue through scalable 

and flexible strategies in C-RAN. For future 

research directions，the servers can be shutdown 

appropriately with controlling task migrations for 

increasing the energy efficiency to make a green 

IT system development in 5G.

The  con t r ibu t ions  o f  th i s  pape r  a re 

summarized as follows：

1. We first introduced the cloud resource 

management problem taking both network

（communication）perspectives and system

（computation）perspectives into account.

Figure 11   Cost of turning a server on for an interval.
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2 .  A c lea r ly  des igned  mathemat ica l 

frameworks for resource management problem 

were proposed to maximize the system revenue of 

network service providers. 

3. Based on dynamic programming，bin 

packing strategies，and Langrangian relaxation 

methods，we developed various heuristic 

approaches to solve these optimization problems.

4. The results of this paper could be used as 

valuable references or guidelines for the planning 

and operations of network service providers and 

researchers in 5G C-RANs.
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